To view the n8n flow demo and copy the JSON you need to purchase our Bundle... don't worry, it's FREE

Go to the BUNDLE

Message Buffer System with Redis for Efficient Processing

🚀 Message-Batching Buffer Workflow (n8n)

This workflow implements a lightweight message-batching buffer using Redis for temporary storage and a JavaScript consolidation function to merge messages. It collects incoming user messages per session, waits for a configurable inactivity window or batch size threshold, consolidates buffered messages via custom code, then clears the buffer and returns the combined response—all without external LLM calls.


🔑 Key Features

  • Redis-backed buffer queues incoming messages for context_id .
  • Centralized Config Parameters node to adjust thresholds and timeouts in one place.
  • Dynamic wait time based on message length (configurable minWords , waitLong , waitShort ).
  • Batch trigger fires on inactivity timeout or when buffer_count ≥ batchThreshold .
  • Zero-cost consolidation via built-in JavaScript Function ( consolidate buffer )—no GPT-4 or external API required.

⚙️ Setup Instructions

  1. Extract Session & Message

    • Trigger: When chat message received (webhook) or When clicking 'Test workflow' (manual).
    • Map inputs: set variables context_id and message into a Set node named Mock input data (for testing) or a proper mapping node in production.
  2. Config Parameters

    • Add a Set node Config Parameters with:

       minWords: 3 # Word threshold
       waitLong: 10 # Timeout (s) for long messages
       waitShort: 20 # Timeout (s) for short messages 
      batchThreshold: 3 # Messages to trigger batch early
      
    • All downstream nodes reference these JSON values ​​dynamically.

  3. Determine Wait Time

    • Node: get wait seconds (Code)

    • JS code:

       const msg = $json.message || '';
       const wordCount = msg.split(/\s+/).filter(w => w).length;
       const { minWords, waitLong, waitShort } = items[0].json;
       const waitSeconds = wordCount < minWords ? waitShort : waitLong;
       return [{ json: { context_id: $json.context_id, message: msg, waitSeconds } }];
      
  4. Buffer Message in Redis

    • Buffer messages : LPUSH buffer_in: {{$json.context_id}} with payload {text, timestamp} .
    • Set buffer_count increment : INCR buffer_count: {{$json.context_id}} with TTL {{$json.waitSeconds + 60}} .
    • Set last_seen : record last_seen: {{$json.context_id}} timestamp with same TTL.
  5. Check & Set Waiting Flag

    • Get waiting_reply : if null, Set waiting_reply to true with TTL {{$json.waitSeconds}} ; else exit.
  6. Wait for Inactivity

    • WaitSeconds (webhook): pauses for {{$json.waitSeconds}} seconds before batch evaluation.
  7. Check Batch Trigger

    • Get last_seen and Get buffer_count .
    • IF (now - last_seen) ≥ waitSeconds * 1000 OR buffer_count ≥ batchThreshold , proceed; else use Wait node to retry.
  8. Consolidate Buffer

    • consolidate buffer (Code):

       const j = items[0].json;
       const raw = Array.isArray(j.buffer) ? j.buffer : [];
       const buffer = raw.map(x => { 
      try { return typeof x === 'string' ? JSON.parse(x) : x;
       } catch { return null; }
       }).filter(Boolean);
       buffer.sort((a, b) => new Date(a.timestamp) - new Date(b.timestamp));
       const texts = buffer.map(e => e.text?.trim()).filter(Boolean);
       const unique = [...new Set(texts)];
       const message = unique.join(' ');
       return [{ json: { context_id: j.context_id, message } }];
      
  9. Cleanup & Respond

    • Delete Redis keys: buffer_in , buffer_count , waiting_reply , last_seen (for the context_id ).
    • Return consolidated message to the user via your chat integration.

đź›  Customization Guidance

  • Adjust thresholds by editing the Config Parameters node.
  • Change concatenation (eg, line breaks) by modifying the join separator in the consolidation code.
  • Add filters (eg, ignore empty or system messages) inside the consolidation Function.
  • Monitor performance : for very high volume, consider sharding Redis keys by date or user segments.

© 2025 Innovatex • Automation & AI Solutions • innovatexiot.carrd.co • LinkedIn

Do you want to automate your business?

Let's talk about your project