Robert Breen

Robert Breen

Loop Over Items — Beginner Example

This workflow introduces beginners to one of the most fundamental concepts in n8n: looping over items . Using a simple use case—generating LinkedIn captions for content ideas—it demonstrates how to split a dataset into individual items, process them with AI, and collect the output for review or export.


✅ Key Features

  • 🧪 Create Dummy Data : Simulate a small dataset of content ideas.
  • 🔁 Loop Over Items : Process each row independently using the SplitInBatches node.
  • 🧠 AI Caption Creation : Automatically generate LinkedIn captions using OpenAI.
  • 🧰 Tool Integration : Enhance AI output with creativity-injection tools.
  • 🧾 Final Output Set : Collect the original idea and generated caption.

🧰 What You'll Need

  • ✅ An OpenAI API key
  • ✅ The LangChain nodes enabled in your n8n instance
  • ✅ Basic knowledge of how to trigger and run workflows in n8n

🔧 Step-by-Step Setup

1️⃣ Run Workflow

  • Node : Manual Trigger (Run Workflow)
  • Purpose : Manually start the workflow for testing or learning.

2️⃣ Create Random Data

  • Node : Create Random Data (Code)
  • What it does : Simulates incoming data with multiple content ideas.
  • Code :
 return [
 {
 json: {
 row_number: 2,
 id: 1,
 Date: '2025-07-30',
 idea: 'n8n rises to the top',
 caption: '',
 complete: ''
 }
 },
 {
 json: {
 row_number: 3,
 id: 2,
 Date: '2025-07-31',
 idea: 'n8n nodes',
 caption: '',
 complete: ''
 }
 },
 {
 json: {
 row_number: 4,
 id: 3,
 Date: '2025-08-01',
 idea: 'n8n use cases for marketing',
 caption: '',
 complete: ''
 }
 }
 ];

3️⃣ Loop Over Items

  • Node : Loop Over Items (SplitInBatches)
  • Purpose : Sends one record at a time to the next node.
  • Why It Matters : Loops in n8n are created using this node when you want to iterate over multiple items.

4️⃣ Create Captions with AI

  • Node : Create Captions (LangChain Agent)
  • Prompt :
 idea: {{ $json.idea }}
  • System Message :
 You are a helpful assistant creating captions for a LinkedIn post. Please create a LinkedIn caption for the idea.
  • Model : GPT-4o Mini or GPT-3.5
  • Credentials Required :
    • OpenAI Credential
      • Go to: OpenAI API Keys
      • Create a key and add it in n8n under credentials as “OpenAi account”

5️⃣ Inject Creativity (Optional)

  • Node : Tool: Inject Creativity (LangChain Tool)
  • Purpose : Demonstrates optional LangChain tools that can enhance or manipulate input/output.
  • Why It's Cool : A great way to show chaining tools to AI agents.

6️⃣ Output Table

  • Node : Output Table (Set)
  • Purpose : Combines original ideas and generated captions into final structure.
  • Fields :
    • idea : = {{ $('Create Random Data').item.json.idea }}
    • output : = {{ $json.output }}

💡 Educational Value

This workflow demonstrates:

  • Creating dynamic inputs with the Code node
  • Using SplitInBatches to simulate looping
  • Sending dynamic prompts to an AI model
  • Using Set to structure the output data

Beginners will understand how item-level processing works in n8n and how powerful looping combined with AI can be.


📬 Need Help or Want to Customize This?

Robert Breen
Automation Consultant | AI Workflow Designer | n8n Expert
📧 robert@ynteractive.com
🌐 ynteractive.com
🔗 LinkedIn


🏷️ Tags

n8n loops OpenAI LangChain workflow training beginner LinkedIn automation caption generator

Do you want to automate your business?

Let's talk about your project