Non ci sono articoli nel tuo carrello.
Complete MCP server exposing 4 AWS Cost and Usage Report Service API operations to AI agents.
Need help? Want access to more workflows and even live Q&A sessions with a top verified n8n creator.. All 100% free?
This workflow converts the AWS Cost and Usage Report Service API into an MCP-compatible interface for AI agents.
β’ MCP Trigger: Serves as your server endpoint for AI agent requests
β’ HTTP Request Nodes: Handle API calls to http://cur.{region}.amazonaws.com
β’ AI Expressions: Automatically populate parameters via $fromAI()
placeholders
β’ Native Integration: Returns responses directly to the AI agent
β’ POST /#X-Amz-Target=AWSOrigamiServiceGatewayService.DeleteReportDefinition: Deletes the specified report.
β’ POST /#X-Amz-Target=AWSOrigamiServiceGatewayService.DescribeReportDefinitions: Lists the AWS Cost and Usage reports available to this account.
β’ POST /#X-Amz-Target=AWSOrigamiServiceGatewayService.ModifyReportDefinition: Allows you to programatically update your report preferences.
β’ POST /#X-Amz-Target=AWSOrigamiServiceGatewayService.PutReportDefinition: Creates a new report using the description that you provide.
Parameter Handling: AI agents automatically provide values for:
β’ Path parameters and identifiers
β’ Query parameters and filters
β’ Request body data
β’ Headers and authentication
Response Format: Native AWS Cost and Usage Report Service API responses with full data structure
Error Handling: Built-in n8n HTTP request error management
Connect this MCP server to any AI agent or workflow:
β’ Claude Desktop: Add MCP server URL to configuration
β’ Cursor: Add MCP server SSE URL to configuration
β’ Custom AI Apps: Use MCP URL as tool endpoint
β’ API Integration: Direct HTTP calls to MCP endpoints
β’ Zero Setup: No parameter mapping or configuration needed
β’ AI-Ready: Built-in $fromAI()
expressions for all parameters
β’ Production Ready: Native n8n HTTP request handling and logging
β’ Extensible: Easily modify or add custom logic
π Free for community use! Ready to deploy in under 2 minutes.